Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Sci Total Environ ; 927: 172051, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38565347

ABSTRACT

Phytochemicals and their ecological significance are long ignored in trait-based ecology. Moreover, the adaptations of phytochemicals produced by fine roots to abiotic and biotic pressures are less understood. Here, we explored the fine roots metabolomes of 315 tree species and their rhizosphere microbiome in southwestern China spanning tropical, subtropical, and subalpine forest ecosystems, to explore phytochemical diversity and endemism patterns of various metabolic pathways and phytochemical-microorganism interactions. We found that subalpine species showed higher phytochemical diversity but lower interspecific variation than tropical species, which favors coping with high abiotic pressures. Tropical species harbored higher interspecific phytochemical variation and phytochemical endemism, which favors greater species coexistence and adaptation to complex biotic pressures. Moreover, there was evidence of widespread chemical niche partitioning of closely related species in all regions, and phytochemicals showed a weak phylogenetic signal, but were regulated by abiotic and biotic pressures. Our findings support the Latitudinal Biotic Interaction Hypothesis, i.e., the intensity of phytochemical-microorganism interactions decreases from tropical to subalpine regions, which promotes greater microbial community turnover and phytochemical niche partitioning of host plants in the tropics than in higher latitude forests. Our study reveals the convergent phytochemical diversity patterns of various pathways and their interactions with microorganism, thus promoting species coexistence.


Subject(s)
Phytochemicals , Plant Roots , Plant Roots/microbiology , China , Phytochemicals/analysis , Biodiversity , Rhizosphere , Trees , Microbiota , Forests , Adaptation, Physiological , Climate
2.
Function (Oxf) ; 5(2): zqae004, 2024.
Article in English | MEDLINE | ID: mdl-38486976

ABSTRACT

The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.


Subject(s)
Bone Diseases, Metabolic , Epigenesis, Genetic , Humans , Autophagy/genetics , Homeostasis , Autophagosomes , Bone Density
3.
Clin Cardiol ; 47(2): e24243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38402557

ABSTRACT

BACKGROUND: The ratio of nonhigh-density lipoprotein cholesterol (non-HDL-C) to high-density lipoprotein cholesterol (HDL-C) has been shown associated with various metabolic diseases and atherosclerosis in primary prevention. However, there is limited evidence on the relationship between the non-HDL-C/HDL-C ratio and progression of nonculprit coronary lesion (NCCL) after percutaneous coronary intervention (PCI). HYPOTHESIS: Our study aimed to investigate the potential association between the non-HDL-C/HDL-C ratio and NCCL progression in patients with acute coronary syndrome (ACS) undergoing PCI. METHODS: We conducted a retrospective analysis of ACS patients who underwent coronary angiography twice at a single center from 2016 to 2022. Lipid measurements, demographic, clinical, and other laboratory data were collected from electronic medical records. NCCLs were evaluated using quantitative coronary angiography. The primary outcome was the progression of NCCL. Patients were categorized based on NCCL progression and tertiles of the non-HDL-C/HDL-C ratio. Associations were analyzed using univariate and multivariate logistic regression analysis. RESULTS: The study included 329 ACS patients who underwent PCI, with a median follow-up angiography of 1.09 years. We found NCCL progression in 95 (28.9%) patients with acceptable low-density lipoprotein cholesterol control (median: 1.81 mmol/L). Patients in the top tertile of the non-HDL-C/HDL-C ratio had a higher risk of NCCL progression. After adjusting for potential confounding factors, the non-HDL-C/HDL-C ratio remained a significant predictor for NCCL progression (adjusted odds ratio: 1.45; 95% confidence interval: 1.14-1.86; p < 0.05). CONCLUSIONS: The non-HDL-C/HDL-C ratio predicts NCCL progression in ACS patients following PCI, providing a valuable tool for risk assessment and enhancing secondary prevention of atherosclerotic cardiovascular disease.


Subject(s)
Acute Coronary Syndrome , Atherosclerosis , Percutaneous Coronary Intervention , Humans , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/therapy , Percutaneous Coronary Intervention/adverse effects , Retrospective Studies , Cholesterol , Coronary Angiography , Lipoproteins
4.
BMC Cardiovasc Disord ; 24(1): 121, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388385

ABSTRACT

BACKGROUND: Atherosclerosis(AS) poses a pressing challenge in contemporary medicine. Formononetin (FMN) plays a crucial role in its prevention and treatment. However, the detailed impact of FMN on the stability of atherosclerotic plaques and its underlying mechanisms remain to be elucidated. METHODS: An intervention consisting of FMN was given along with a high-fat food regimen in the ApoE-/- mouse model. The investigation included the evaluation of the degree of atherosclerotic lesion, the main components of the plaque, lipid profiles, particular markers indicating M1/M2 macrophage phenotypes, the quantities of factors related to inflammation, the infiltration of macrophages, and the identification of markers linked to the α7nAChR/JAK2/STAT3 axis effect molecules. RESULTS: The evaluation of aortic morphology in ApoE-/-mice revealed that FMN significantly improved the plaque area, fibrous cap protrusion, lipid deposition, and structural alterations on the aortic surface, among other markers of atherosclerosis,and there is concentration dependence. Furthermore, the lipid content of mouse serum was assessed, and the results showed that the low-, medium-, and high-dosage FMN groups had significantly lower levels of LDL-C, ox-LDL, TC, and TG. The results of immunohistochemical staining indicated that the low-, medium-, and high-dose FMN therapy groups had enhanced CD206 expression and decreased expression of CD68 and iNOS. According to RT-qPCR data, FMN intervention has the potential to suppress the expression of iNOS, COX-2, miR-155-5p, IL-6, and IL-1ß mRNA, while promoting the expression of IL-10, SHIP1, and Arg-1 mRNA levels. However, the degree of inhibition varied among dosage groups. Western blot investigation of JAK/STAT signaling pathway proteins and cholinergic α7nAChR protein showed that p-JAK2 and p-STAT3 protein expression was suppressed at all dosages, whereas α7nAChR protein expression was enhanced. CONCLUSIONS: According to the aforementioned findings, FMN can reduce inflammation and atherosclerosis by influencing macrophage polarization, blocking the JAK/STAT signaling pathway, and increasing α7nAChR expression.


Subject(s)
Atherosclerosis , Isoflavones , Plaque, Atherosclerotic , Mice , Animals , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Signal Transduction , Mice, Knockout, ApoE , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Apolipoproteins E/genetics , Inflammation , RNA, Messenger , Mice, Inbred C57BL
5.
Sci China Life Sci ; 67(4): 789-802, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38057621

ABSTRACT

Foundational cushion plants can re-organize community structures and sustain a prominent proportion of alpine biodiversity, but they are sensitive to climate change. The loss of cushion species can have broad consequences for associated biota. The potential plant community changes with the population dynamics of cushion plants remain, however, unclear. Using eight plant communities along a climatic and community successional gradient, we assessed cushion population dynamics, the underlying ecological constraints and hence associated plant community changes in alpine communities dominated by the foundational cushion plant Arenaria polytrichoides. The population dynamics of Arenaria are attributed to ecological constraints at a series of life history stages. Reproductive functions are constrained by increasing associated beneficiary plants; subsequent seedling establishment is constrained by temperature, water and light availability, extreme climate events, and interspecific competition; strong competitive exclusion may accelerate mortality and degeneration of cushion populations. Along with cushion dynamics, species composition, abundance and community structure gradually change. Once cushion plants completely degenerate, previously cushion-dominated communities shift to relatively stable communities that are overwhelmingly dominated by sedges. Climate warming may accelerate the degeneration process of A. polytrichoides. Degeneration of this foundational cushion plant will possibly induce massive changes in alpine plant communities and hence ecosystem functions in alpine ecosystems. The assessment of the population dynamics of foundation species is critical for an effective conservation of alpine biodiversity.


Subject(s)
Biodiversity , Ecosystem , Plants , Climate Change , Biota
6.
Chemistry ; 30(11): e202303421, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38010239

ABSTRACT

Multifunctional groups diarylamines, an innovative product, efficiently produced from arylamines and p-nitrosoanisole derivatives by intermolecular SN Ar under weak acid conditions. This SN Ar proceeds under mild reaction conditions, and more significantly, the substrates involved do not necessarily require strong electron-withdrawing groups. Moreover, this SN Ar is characterized by resistance to space crowding, tolerance to halogen and nitroso functional groups, and high regioselectivity. Mechanistic observations suggest that the SN Ar is the result of the transfer of the positive charge center of the protonated nitroso group to the p-methoxy group.

7.
Front Microbiol ; 14: 1253239, 2023.
Article in English | MEDLINE | ID: mdl-38116531

ABSTRACT

During the survey on freshwater hyphomycetes in Guangxi, Guizhou and Hainan Provinces, China, five fresh collections were encountered. Based on their morphology, these five isolates were identified as belonging to Hermatomyces, Kirschsteiniothelia, Paramonodictys, Pleopunctum and Sparticola. Multi-gene phylogenetic analyses were performed for each genus, which resulted in the identification of five new species, namely Hermatomyces hainanensis, Kirschsteiniothelia ramus, Paramonodictys globosa, Pleopunctum guizhouense, and Sparticola irregularis. Detailed descriptions and illustrations of the morphological characteristics of these new taxa were provided. This research enriches the biodiversity of freshwater dematiaceous hyphomycetes.

8.
Molecules ; 28(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37959870

ABSTRACT

Astragalus membranaceus is a traditional Chinese medicine derived from the roots of Astragalus membranaceus (Fisch.) Bge., which has the same medicinal and edible uses in China. It is also widely used in daily food, and its pharmacological effects mainly include antioxidant effects, vascular softening effects, etc. Currently, it is increasingly widely used in the prevention of hypertension, cerebral ischemia, and stroke in China. Formononetin and its glucopyranoside (ononin) are both important components of Astragalus membranaceuss and may play important roles in the treatment of cardiovascular diseases (CVDs). This study conducted metabolic studies using formononectin and its glucopyranoside (ononin), including a combination of the in vitro metabolism of Formonetin using rat liver S9 and the in vivo metabolism of ononin administered orally to rats. Five metabolites (Sm2, 7, 9, 10, and 12) were obtained from the solution incubated with formononetin and rat hepatic S9 fraction using chromatographic methods. The structures of the five metabolites were elucidated as (Sm2)6,7,4'-trihydroxy-isoflavonoid; (Sm7)7,4'-dihydroxy-isoflavonoid; (Sm9)7,8,4'-trihydroxy-isoflavonoid; (Sm10)7,8,-dihydroxy-4'-methoxy-isoflavonoid; and (Sm12)6,7-dihydroxy-4'-methoxy- isoflavonoid on the basis of UV, NMR, and MS data. Totally, 14 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis, from which the formononetin was incubated with rat hepatic S9 fraction, and the main metabolic pathways were hydroxylation, demethylation, and glycosylation. Then, 21 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis from the urine samples from SD rats to which ononin was orally administered, and the main metabolic pathways were glucuronidation, hydroxylation, demethylation, and sulfonation. The main difference between the in vitro metabolism of formononetin and the in vivo metabolism of ononin is that ononin undergoes deglycemic transformation into Formonetin in the rat intestine, while Formonetin is absorbed into the bloodstream for metabolism, and the metabolic products also produce combined metabolites during in vivo metabolism. The six metabolites obtained from the aforementioned separation indicate the primary forms of formononetin metabolism, and due to their higher contents of similar isoflavone metabolites, they are considered the main active compounds that are responsible for pharmacological effects. To investigate the metabolites of the active ingredients of formononetin in the rat liver S9 system, network pharmacology was used to evaluate the cardiovascular disease (CVD) activities of the six primary metabolites that were structurally identified. Additionally, the macromolecular docking results of six main components and two core targets (HSP90AA1 and SRC) related to CVD showed that formononetin and its main metabolites, Sm10 and Sm12, may have roles in CVD treatment due to their strong binding activities with the HSP90AA1 receptor, while the Sm7 metabolite may have a role in CVD treatment due to its strong binding activity with the SRC receptor.


Subject(s)
Cardiovascular Diseases , Drugs, Chinese Herbal , Isoflavones , Rats , Animals , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Network Pharmacology , Isoflavones/chemistry , Chromatography, High Pressure Liquid/methods , Liver/metabolism
9.
Mol Plant Pathol ; 24(12): 1495-1509, 2023 12.
Article in English | MEDLINE | ID: mdl-37746915

ABSTRACT

Chitin is a long-chain polymer of ß-1,4-linked N-acetylglucosamine that forms rigid microfibrils to maintain the hyphal form and protect it from host attacks. Chitin oligomers are first recognized by the plant receptors in the apoplast region, priming the plant's immune system. Here, seven polysaccharide deacetylases (PDAs) were identified and their activities on chitin substrates were investigated via systematic characterization of the PDA family from Fusarium graminearum. Among these PDAs, FgPDA5 was identified as an important virulence factor and was specifically expressed during pathogenesis. ΔFgpda5 compromised the pathogen's ability to infect wheat. The polysaccharide deacetylase structure of FgPDA5 is essential for the pathogenicity of F. graminearum. FgPDA5 formed a homodimer and accumulated in the plant apoplast. In addition, FgPDA5 showed a high affinity toward chitin substrates. FgPDA5-mediated deacetylation of chitin oligomers prevented activation of plant defence responses. Overall, our results identify FgPDA5 as a polysaccharide deacetylase that can prevent chitin-triggered host immunity in plant apoplast through deacetylation of chitin oligomers.


Subject(s)
Chitin , Fusarium , Virulence , Plants , Plant Immunity , Plant Diseases
10.
Theor Appl Genet ; 136(10): 213, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37740730

ABSTRACT

KEY MESSAGE: A novel and stably expressed QTL QSNS.sicau-SSY-7A for spikelet number per spike in wheat without negative effects on thousand-kernel weight was identified and validated in different genetic backgrounds. Spikelet number per spike (SNS) is an important determinant of yield in wheat. In the present study, we combined bulked segregant analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array to rapidly identify genomic regions associated with SNS from a recombinant inbred line (RIL) population derived from a cross between the wheat lines S849-8 and SY95-71. A genetic map was constructed using Kompetitive Allele Specific PCR markers in the SNP-enriched region on the long arm of chromosome 7A. A major and stably expressed QTL, QSNS.sicau-SSY-7A, was detected in multiple environments. It was located in a 1.6 cM interval on chromosome arm 7AL flanked by the markers AX-109983514 and AX-109820548. This QTL explained 6.86-15.72% of the phenotypic variance, with LOD values ranging from 3.66 to 8.66. Several genes associated with plant growth and development were identified in the interval where QSNS.sicau-SSY-7A was located on the 'Chinese Spring' wheat and wild emmer reference genomes. Furthermore, the effects of QSNS.sicau-SSY-7A and WHEAT ORTHOLOG OFAPO1(WAPO1) on SNS were analyzed. Interestingly, QSNS.sicau-SSY-7A significantly increased SNS without negative effects on thousand-kernel weight, anthesis date and plant height, demonstrating its great potential for breeding aimed at improving grain yield. Taken together, these results indicate that QSNS.sicau-SSY-7A is a promising locus for yield improvement, and its linkage markers are helpful for fine mapping and molecular breeding.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Alleles , DNA Shuffling , Edible Grain
11.
Front Mol Biosci ; 10: 1228771, 2023.
Article in English | MEDLINE | ID: mdl-37719264

ABSTRACT

Background: Cold exposure (CE) can effectively modulate adipose tissue metabolism and improve metabolic health. Although previous metabolomics studies have primarily focused on analyzing one or two samples from serum, brown adipose tissue (BAT), white adipose tissue (WAT), and liver samples, there is a significant lack of simultaneous analysis of multiple tissues regarding the metabolic changes induced by CE in mice. Therefore, our study aims to investigate the metabolic profiles of the major tissues involved. Methods: A total of 14 male C57BL/6J mice were randomly assigned to two groups: the control group (n = 7) and the CE group (n = 7). Metabolite determination was carried out using gas chromatography-mass spectrometry (GC-MS), and multivariate analysis was employed to identify metabolites exhibiting differential expression between the two groups. Results: In our study, we identified 32 discriminant metabolites in BAT, 17 in WAT, 21 in serum, 7 in the liver, 16 in the spleen, and 26 in the kidney, respectively. Among these metabolites, amino acids, fatty acids, and nucleotides emerged as the most significantly altered compounds. These metabolites were found to be associated with 12 differential metabolic pathways closely related to amino acids, fatty acids, and energy metabolism. Conclusion: Our study may provide valuable insights into the metabolic effects induced by CE, and they have the potential to inspire novel approaches for treating metabolic diseases.

12.
Front Immunol ; 14: 1236812, 2023.
Article in English | MEDLINE | ID: mdl-37593743

ABSTRACT

The subject of this study was to explore the optimum requirements of loach (Paramisgurnus dabryanus) regarding dietary proteins and lipids and discuss the underlying mechanism. We designed nine diets to determine the effects of different levels of dietary crude protein (CP: 30%, 35%, and 40%) and ether extract (EE: 6%, 10%, and 14%) on the growth performance and metabolism of P. dabryanus. In total, 2160 healthy P. dabryanus (5.19 ± 0.01 g) were divided into nine groups with four replications at 60 fish per barrel stocking density. The trial lasted for eight weeks. Serum and liver samples were gathered for metabolomic and transcriptomic analyses. The results showed that the specific growth rate of P. dabryanus in the CP40EE10 group was the fastest and notably higher than that in other groups (P< 0.05). Analysis of the metabolome results found that the mTOR signaling pathway, glycerophospholipid metabolism, D-arginine and D-ornithine metabolism were significantly enriched pathways in the CP40EE10 group compared with the other groups (P< 0.05). Moreover, the transcriptomic analysis of differentially expressed genes (DEGs) showed that the expression of ARG (arginase) involved in protein synthesis was significantly upregulated in the CP40EE10 group compared to the slowest growing group (P< 0.05). Additionally, the expression of SPLA2 (secretory phospholipase A2) involved in lipid metabolism and FBP (fructose-1,6-bisphosphatase) involved in glucose metabolism were all significantly downregulated in the CP30EE6 group compared with the CP40EE10 group (P< 0.05). Furthermore, the analysis of differentially expressed metabolites (DEMs) and DEGs co-enriched in the KEGG pathway revealed that the significantly enriched pathways were arginine and proline metabolism, glycerophospholipid metabolism, and glycolysis/gluconeogenesis in CP40EE10 compared with other groups (P< 0.05). We conclude that including 40% CP and 10% EE in the P. dabryanus diet could result in a better growth rate. We hypothesized from metabolomic and transcriptomic analyses that the CP40EE10 diet might promote the growth of P. dabryanus by promoting protein synthesis, lipid metabolism, and energy production.


Subject(s)
Cypriniformes , Transcriptome , Animals , Cypriniformes/genetics , Arginine , Dietary Proteins , Glycerophospholipids , Lipids
13.
Int J Biol Macromol ; 251: 126365, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37591421

ABSTRACT

Grain shape and plumpness affect barley yield. Despite numerous studies on shrunken endosperm mutants in barley, their molecular mechanism and application potential in the food industry are largely unknown. Here, map-based cloning, co-segregation analyses, and allelic variant validation revealed that the loss of HORVU6Hr1G037950 encoding an ADP-glucose transporter caused the shrunken endosperm in sex1. Haplotype analysis suggested that hap4 in the promoter sequence was positively related to the hundred-grain weight showing a breeding potential. A pair of near-isogenic lines targeting HORVU6Hr1G037950 was produced and characterized to investigate molecular mechanisms that SEX1 regulates endosperm development. Results presented that the absence of the SEX1 gene led to the decrease of starch content and A-type granules size, the increase of ß-glucan, protein, gelatinization temperature, soluble sugar content, amylopectin A chains, and B1 chains. Enzymatic activity, transcriptome and metabolome analyses revealed the loss of SEX1 results in an impaired ADP-glucose-to-starch conversion process, consequently leading to higher soluble sugar contents and lower starch accumulation, thereby inducing a shrunken-endosperm phenotype in sex1. Taken together, this study provides new insights into barley grain development, and the elevated protein and ß-glucan contents of the whole meal in sex1 imply its promising application in the food industry.

14.
Front Immunol ; 14: 1118198, 2023.
Article in English | MEDLINE | ID: mdl-37404827

ABSTRACT

Lipid is an important source of energy in fish feeds, and the appropriate fat content can improve the efficiency of protein utilization. However, excessive lipid content in the feed can lead to abnormal fat deposition in fish, which has a negative effect on the growth of fish. Therefore, the effects of feed lipid levels on swamp eel were studied. Essential functional genes were screened using transcriptomics. We divided 840 fish into seven groups (four replicates). A mixture of fish and soybean oils (1:4), 0%, 2%, 4%, 6%, 8%, 10%, and 12% was added to the basic feed were named groups one to seven (L1-L7), respectively. Isonitrogenous diets were fed swamp eel for 10 weeks. Growth performance, visceral index, nutritional components, and biochemical indexes were measured and analyzed. Livers of the 0%, 6%, and 12% groups were subjected to transcriptome sequencing analysis. The results of our study showed that: the suitable lipid level for the growth of swamp eel was 7.03%; the crude fat content of whole fish, liver, intestine, muscle, and skin increased with the increase of lipid level, with some significant difference, and excess fat was deposited in skin tissue; triglyceride, total cholesterol, and free fatty acid contents increased with the increase of feed lipid level. High-density lipoprotein levels in the L3 and L4 groups were higher than in the other groups. Blood glucose concentrations in the L5, L6, and L7 groups increased; the liver tissue structure was damaged when the lipid level was too high. two-hundred-and-twenty-eight differentially expressed genes were found. Several critical pathways regulating glucose metabolism and energy balance (e.g., glycerolipid metabolism, glycolysis synthesis, degradation of ketone bodies, and Janus Kinase/Signal Transducer and Activator of Transcription signaling pathway) were enriched in swamp eel compared with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Suitable lipid levels (7.03%) can promote the growth of swamp eel, and excessive lipid levels can cause elevated blood lipids and lead to liver cell damage. Regulatory mechanisms may involve multiple metabolic pathways for glucose and lipid metabolism in eels. This study provides new insights to explain the mechanism of fat deposition due to high levels of lipid and provides a basis for the production of efficient and environmentally friendly feed for swamp eel.


Subject(s)
Smegmamorpha , Animals , Smegmamorpha/genetics , Smegmamorpha/metabolism , Liver , Muscles , Gene Expression Profiling
15.
Aging (Albany NY) ; 15(14): 7258-7277, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37517089

ABSTRACT

PURPOSE: Chronic inflammation and lipid peroxidation (LPO) are associated with the pathogenesis of hepatocellular carcinoma (HCC), and γ-hydroxy-1, N2-propanodeoxyguanosine (γ-OHPdG) is a promutagenic DNA adduct derived from LPO. This study aimed to examine the relationship between γ-OHPdG and the progression of liver carcinogenesis. METHODS: Primary HCC specimens were obtained from 228 patients and cirrhosis specimens from 46 patients. The patients were followed up with after surgery via outpatient visits and telephone calls. The levels of γ-OHPdG were determined by immunohistochemical analysis in the carcinomatous tissues together with adjacent and cirrhosis tissues. RESULTS: γ-OHPdG levels in the cancerous tissues were significantly higher compared to adjacent tissues (P < 0.001) and also higher than the ones from the tissues of cirrhosis patients. Along with tumor size, histological grade, MVI grade, T stage, the percentage of ki67-positive cells and HCC progression, γ-OHPdG levels in cancerous tissues showed a gradually increasing trend. Moreover, prognostic analysis showed that higher γ-OHPdG levels in cancerous tissues were strongly correlated with lower overall survival (P < 0.001), lower intrahepatic recurrence-free survival (P < 0.001) and lower distant metastasis-free survival (P < 0.05). There was a trend, although not statistically significant, of increased levels of γ-OHPdG in cirrhosis cases that advanced to HCC, whereas γ-OHPdG levels reversely correlated with the period of time observed for cirrhosis advanced to HCC. CONCLUSIONS: These results suggest that γ-OHPdG is a prognostic biomarker for predicting outcomes in HCC, and may serve as a prospective indicator for predicting HCC in cirrhosis patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , DNA Adducts , Prognosis , Lipid Peroxidation , Prospective Studies , Liver Cirrhosis/diagnosis , Liver Cirrhosis/complications , Biomarkers , Biomarkers, Tumor/genetics
16.
Philos Trans A Math Phys Eng Sci ; 381(2254): 20220168, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37454683

ABSTRACT

Determination of pavement internal condition from a non-destructive field test is a persistent topic for its practical necessity and difficulty. It is essentially an inverse problem calibrating pavement material and structural properties from pavement responses. Considering the intrinsic complexity of asphalt pavement materials (e.g., time and temperature dependencies of asphalt mixture and stress dependency of unbound granular materials), this problem has become a typical high-dimensional optimization problem with a large and diverse set of calibrated parameters. This study investigated the feasibility of artificial intelligence-based finite element model updating in addressing this problem, and focused on the accuracy as well as stability of the backcalculated results. For a comprehensive evaluation of this method, the effects of its components such as the surrogate model representing the pavement system, the applied pavement response, the optimization algorithm and the backcalculation scheme were characterized. Finally, we found that the sensitivity of applied pavement responses to thebackcalculated pavement condition, the number of applied pavement responses and the balance between the backcalculated pavement condition and the applied test were of significant importance to achieving accurate and stable backcalculation results. Corresponding modifications were recommended to be conducted in future research for improving the performance of the proposed backcalculation method. This article is part of the theme issue 'Artificial intelligence in failure analysis of transportation infrastructure and materials'.

17.
Microorganisms ; 11(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37317141

ABSTRACT

Pacific oysters (Crassostrea gigas) are widely cultured in Chinese marine ranching with high economic value. However, mass death of farmed oysters has occurred frequently in recent years because of diseases and environmental disturbance (e.g., high temperatures). In order to analyze the potential relationships between microorganisms and the death of farmed oysters, we compared the dynamics of bacterial and protist communities in oysters at different growth phases using high-throughput sequencing. The results showed that the microbial communities in farmed oysters significantly changed and were markedly different from microbes in natural oysters and the surrounding environments. The number of biomarker taxa among farmed oysters and their surrounding environments decreased gradually with the growth of oysters. During the mass death of farmed oysters, the microbial communities' abundance of ecological function genes changed, and the correlations among microorganisms disappeared. These results enrich our understanding of the dynamics of microbial communities in farmed oysters at different growth phases, illustrating the characteristics of interactions among microorganisms during the mass death of farmed oysters. Our study is beneficial to promote the healthy aquaculture of oysters.

18.
Mol Plant Pathol ; 24(10): 1205-1219, 2023 10.
Article in English | MEDLINE | ID: mdl-37306522

ABSTRACT

The dynamic balance and distribution of sphingolipid metabolites modulate the level of programmed cell death and plant defence. However, current knowledge is still limited regarding the molecular mechanism underlying the relationship between sphingolipid metabolism and plant defence. In this study, we identified a wheat RNA-binding protein 1 (TaRBP1) and TaRBP1 mRNA accumulation significantly decreased in wheat after infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaRBP1 via virus-induced gene silencing conferred strong resistance to Pst by enhancing host plant reactive oxygen species (ROS) accumulation and cell death, indicating that TaRBP1 may act as a negative regulator in response to Pst. TaRBP1 formed a homopolymer and interacted with TaRBP1 C-terminus in plants. Additionally, TaRBP1 physically interacted with TaGLTP, a sphingosine transfer protein. Knockdown of TaGLTP enhanced wheat resistance to the virulent Pst CYR31. Sphingolipid metabolites showed a significant accumulation in TaGLTP-silenced wheat and TaRBP1-silenced wheat, respectively. In the presence of the TaRBP1 protein, TaGLTP failed to be degraded in a 26S proteasome-dependent manner in plants. Our results reveal a novel susceptible mechanism by which a plant fine-tunes its defence responses by stabilizing TaGLTP accumulation to suppress ROS and sphingolipid accumulation during Pst infection.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Triticum/metabolism , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Plant Diseases/genetics
19.
Front Immunol ; 14: 1170579, 2023.
Article in English | MEDLINE | ID: mdl-37256138

ABSTRACT

Objectives: We aimed to evaluate the indeterminate rate of interferon gamma release assays (IGRAs) in the detection of latent tuberculosis infection (LTBI). Methods: On 15 November 2022, we searched the PubMed® (National Library of Medicine, Bethesda, MD, USA), Embase® (Elsevier, Amsterdam, the Netherlands), and Cochrane Library databases in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two investigators independently extracted the study data and assessed their quality using a modified quality assessment of diagnostic accuracy studies (i.e., QUADAS-2) tool. A random-effects model was used to calculate pooled results. Results: We included 403 studies involving 486,886 individuals and found that the pooled indeterminate rate was 3.9% (95% CI 3.5%-4.2%). The pooled indeterminate rate for QuantiFERON®-TB (QFT) was similar to that for T-SPOT®.TB (T-SPOT) [odds ratio (OR) = 0.88, 95% CI 0.59-1.32]; however, the indeterminate rate for a new generation of QFT (QFT-plus) was lower than that of T-SPOT (OR = 0.24, 95% CI 0.16-0.35). The indeterminate rate in the immunocompromised population was significantly higher than that in healthy controls (OR = 3.51, 95% CI 2.11-5.82), and it increased with the reduction of CD4+ cell count in HIV-positive patients. Children's pooled indeterminate rates (OR = 2.56, 95% CI 1.79-3.57) were significantly higher than those of adults, and the rates increased as the children's age decreased. Conclusion: On average, 1 in 26 tests yields indeterminate IGRA results in LTBI screening. The use of advanced versions of the QuantiFERON-TB assay (QFT-plus), may potentially reduce the occurrence of an indeterminate result. Our study emphasizes the high risk of immunosuppression and young age in relation to indeterminate IGRA, which should receive more attention in the management of LTBI. Systematic review registration: PROSPERO https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020211363, CRD42020211363.


Subject(s)
HIV Seropositivity , Latent Tuberculosis , United States , Child , Adult , Humans , Interferon-gamma Release Tests/methods , Latent Tuberculosis/diagnosis , Latent Tuberculosis/epidemiology , Mass Screening , Immunocompromised Host
20.
Materials (Basel) ; 16(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37049205

ABSTRACT

The fabrication of high-performance copper alloys by selective laser melting (SLM) is challenging, and establishing relationships between the process parameters and microstructures is necessary. In this study, Cu-Cr-Nb-Ti alloy is manufactured by SLM, and the microstructures of the alloy are investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and electron backscatter diffraction (EBSD). The effects of processing parameters such as laser power and scanning speed on the relative density, defects, microstructures, mechanical properties, and electrical conductivity of the Cu-Cr-Nb-Ti alloy are studied. The optimal processing window for fabricating Cu-Cr-Nb-Ti alloy by SLM is determined. Face-centered cubic (FCC) Cu diffraction peaks shifting to small angles are observed, and there are no diffraction peaks related to the second phase. The grains of XY planes have a bimodal distribution with an average grain size of 24-55 µm. Fine second phases with sizes of less than 50 nm are obtained. The microhardness, tensile strength, and elongation of the Cu-Cr-Nb-Ti alloy manufactured using the optimum processing parameters, laser power of 325 W and scanning speed of 800 mm/s, are 139 HV0.2, 416 MPa, and 27.8%, respectively, and the electrical conductivity is 15.6% IACS (International Annealed Copper Standard). This study provides a feasible scheme for preparing copper alloys with excellent performance and complex geometries.

SELECTION OF CITATIONS
SEARCH DETAIL
...